Institutionen för bild- och slöjdpedagogik

Självständigt arbete i bild, 30 hp
Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan (Bild/Design)
VT2016
Kursledare: Kenneth Karlsson
Handledare: Fredrik Lindstrand & Ingrid Falk
Examinatorer: Staffan Selander

Error Syntax
Bilden på framsidan är skapad av en elev som har gjort bilduppgiften *Om det här då det där*.\(^1\)

### Abstrakt

Syftet med mitt arbete är att undersöka hur jag som bildlärare kan skapa förutsättningar för lärandet av programmering i bildämnet. Detta undersöker jag genom att designa tre bilduppgifter som har med programmering att göra. Min frågeställning är:

Hur kan jag som bildlärare skapa förutsättningar för lärandet av programmering i bildämnet?

För att undersöka denna fråga kommer jag att fokusera på dessa underfrågor:

1. Vilka är mina intentioner kring förutsättningar för lärandet av programmering i bildämnet?
2. Hur kan jag iscensätta mina intentioner?
3. Hur upplevs mina iscensättningar?

Min designprocess består av tre steg. Först identifierar jag problem inom lärandet av programmering i skolan. Detta gör jag med hjälp av tidigare forskning i form av två avhandlingar. Ett problem som beskrivs är att många lärare anser att inte alla elever kan uppnå godkänt betyg och att en förändring i pedagogiken inte hjälper.\(^2\) I våra skolor är det även vanligt med ett fokus på lärandet av syntax samtidigt som lärandet av problemlösning hamnar i baksätet.\(^3\) Att kunna programmera handlar allt för ofta om att bara kunna skriva kod. Problemen jag vill lyfta fram i mitt arbete är:

1. Ordet programmering betyder olika saker för olika personer.
2. När vi lär oss programmering ligger fokus på syntax istället för problemlösning.

För att undersöka dessa problem så vill jag:

1. Synliggöra vad programmering betyder för mig.
2. Lägga fokus på problemlösning och ett undersökande av programmering.

---

\(^1\) Bild 1.  

**Nyckelord**

programmering, bild, bildämnet, bilduppgift, syntax.
## Innehållsförteckning

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Sida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstrakt</td>
<td>2</td>
</tr>
<tr>
<td>Nyckelord</td>
<td>3</td>
</tr>
<tr>
<td>Innehållsförteckning</td>
<td>4</td>
</tr>
<tr>
<td>1 Inledning</td>
<td>5</td>
</tr>
<tr>
<td>1.1 Introduktion</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Bakgrund</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1 Pedagogiska verktyg</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2 Programmering och konst</td>
<td>7</td>
</tr>
<tr>
<td>1.2.3 Programmering i bildämnet</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Syfte</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Frågeställning</td>
<td>9</td>
</tr>
<tr>
<td>2 Empiri</td>
<td>9</td>
</tr>
<tr>
<td>3 Urval och avgränsning</td>
<td>10</td>
</tr>
<tr>
<td>4 Metod</td>
<td>11</td>
</tr>
<tr>
<td>5 Teoretiska perspektiv</td>
<td>13</td>
</tr>
<tr>
<td>6 Tidigare forskning</td>
<td>14</td>
</tr>
<tr>
<td>6.1 Programmeringens intentionala objekt Nio elevers uppfattningar av programmering</td>
<td>14</td>
</tr>
<tr>
<td>6.2 Programmed or Not A study about programming teachers’ beliefs and intentions in relation to curriculum</td>
<td>16</td>
</tr>
<tr>
<td>7 Bearbetning och analys</td>
<td>18</td>
</tr>
<tr>
<td>7.1 Steg ett Identifiera problem och försöka förstå dessa problem</td>
<td>18</td>
</tr>
<tr>
<td>7.2 Steg två Design av bilduppgifter</td>
<td>21</td>
</tr>
<tr>
<td>7.2.1 Jag ser du ritar</td>
<td>22</td>
</tr>
<tr>
<td>7.2.2 Loop</td>
<td>24</td>
</tr>
<tr>
<td>7.2.3 Om det här då det där</td>
<td>25</td>
</tr>
<tr>
<td>Här har jag själv testat att utföra bilduppgiften <em>Om det här då det där</em></td>
<td>25</td>
</tr>
<tr>
<td>7.3 Steg tre Test av bilduppgifter med hjälp av elever</td>
<td>26</td>
</tr>
<tr>
<td>7.3.1 Test 1</td>
<td>26</td>
</tr>
<tr>
<td>7.3.2 Test 2</td>
<td>28</td>
</tr>
<tr>
<td>8 Tolkning och resultat</td>
<td>30</td>
</tr>
<tr>
<td>8.2 Gestaltung</td>
<td>31</td>
</tr>
<tr>
<td>10 Slutdiskussion</td>
<td>32</td>
</tr>
<tr>
<td>10.1 Framtida studier</td>
<td>33</td>
</tr>
<tr>
<td>10.2 Error Syntax</td>
<td>33</td>
</tr>
<tr>
<td>11 Källförteckning</td>
<td>34</td>
</tr>
<tr>
<td>11.1 Tryckta källor</td>
<td>34</td>
</tr>
<tr>
<td>11.2 Otryckta källor</td>
<td>34</td>
</tr>
<tr>
<td>11.3 Internetkällor</td>
<td>35</td>
</tr>
<tr>
<td>12 Bildförteckning</td>
<td>36</td>
</tr>
<tr>
<td>13 Bilagor</td>
<td>37</td>
</tr>
<tr>
<td>13.1 Bilaga 1 – Jag ser du ritar</td>
<td>37</td>
</tr>
<tr>
<td>13.2 Bilaga 2 – Loop</td>
<td>39</td>
</tr>
<tr>
<td>13.3 Bilaga 3 – Om det här då det där</td>
<td>41</td>
</tr>
</tbody>
</table>
1 Inledning

1.1 Introduktion

**Programmering** v. –de | utarbeta program för dator; programmerad undervisning med självstudiematerial o. tekniska hjälpmedel efter ett i steg ordnat program. ⁴

**Syntax error** (svenska: syntaxfel) är inom datavetenskap ett felmeddelande som uppstår när ett program inte är skrivet enligt syntaxreglerna för programspråket i fråga. Dessa fel beror ofta på stav- eller skrivfel och är sällan resultatet av ett logiskt tankefel. Om ett syntax error-meddelande uppkommer under kompileringen av programmet, behöver källkoden rättas innan kompileringen kan slutföras korrekt.⁵


---

⁴*Svenska akademien ordlista över svenska språket*, svenskakademien.se (10-02-2016).
⁶”Gör programmering till ett eget ämne“*, dagessamhalle.se, 02-02-2016.
1.2 Bakgrund


1.2.1 Pedagogiska verktyg


---

8Rolandsson (2015), s. 52.
9Segolsson, (2006), s. 41.
10Scratch – Imagine, Program and Share, scratch.mit.edu, 30-04-2016.
11Quirkbot, quirkbot.com, 30-04-2016.

1.2.2 Programmering och konst


13Wen Zhu, wenzhuart.com, 30-04-2016.
15Computer Science Unplugged, csunplugged.org, 30-04-2016.
1.2.3 Programmering i bildämnet


1.3 Syfte


1.4 Frågeställning

För att uppnå syftet med mitt arbete utgår jag från denna frågeställning:

Hur kan jag som bildlärare skapa förutsättningar för lärandet av programmering i bildämnet?

För att undersöka denna fråga kommer jag att fokusera på dessa underfrågor:

Vilka är mina intentioner kring förutsättningar för lärandet av programmering i bildämnet?

Hur kan jag iscensätta mina intentioner?

Hur upplevs mina iscensättningar?

2 Empiri

3 Urval och avgränsning


\textsuperscript{17}Ämne – Bild(gymnasieskolan), skolverket.se, 01-05-2016.
4 Metod

I mitt arbete vill jag göra något som kan användas i skolan. Jag vill att det jag gör är något som är relevant och kan användas i praktiken i klassrummet. Därför är den metod jag har valt inspirerad av educational design research. Denna metod låter mig undersöka vad jag som lärare kan göra för att skapa förutsättningar för lärande genom att designa bilduppgifter som går att använda inom bildämnet i skolan.

En definition av design research är: “design research: to design/develop an intervention (such as programs, teaching-learningstrategies and materials, products and systems) with the aim to solve a complex educational problem and to advance our knowledge about the characteristics of these interventions and the processes to design and develop them.”

En mer övergripande förklaring på innebörden av educational design research är: ”a series of approaches, with the intent of producing new theories, artifacts, and practices that account for and potentially impact learning and teaching in naturalistic settings.”

I detta arbete så handlar design om att utveckla nya lösningar i specifika sociala sammanhang, att producera nya sätt att ordna världen. Detta innebär även en kritik mot rådande ordning.

Min designprocess i detta arbete är uppdelad i tre steg:

| 1) Identifiera ett eller flera problem | Detta görs med hjälp av tidigare forskning. |
| 2) Designa uppgifter | Detta görs med inspiration från lärare. |
| 3) Testa och analys | Detta görs med inspiration från elever. |

Schematisk bild över de tre stegen i min designprocess.

Steg ett av tre i min designprocess bestod av att identifiera problem och försoöka förstå dessa problem. För att göra detta så har jag använt mig av tidigare forskning som handlar om programmering i skolan och litteratur om hur vi kan skapa förutsättningar för lärande. Steg två var att designa tre bilduppgifter med mål att lösa identifierade problem. I designen av bilduppgifterna så har jag hämtat inspiration från min egen tid i skolan, bilduppgifter i vilka jag har funnit programmeringsmoment och tips från lärare. Slutligen i steg tre så har jag testat bilduppgifterna med hjälp av elever. I samband med testerna så har jag ställt frågor om

18 Plomp, Tjeerd & Nieveen, Nienke (2010), An introduction to educational design research, Enschede: SLO, s. 12.
21 Bild 2.
programmering och vi har diskuterat vad vi tänker om programmering, bilduppgifterna och kreativitet. Vart och ett av dessa tre steg har bidragit med data till min undersökning och låtit mig undersöka min frågeställning på olika sätt. I steg ett har jag läst om hur andra har upplevt ett problem kopplat till min frågeställning och hur de har svarat på sina frågor om problemet. I steg två så har jag själv arbetat med att designa en lösning på problem och genererat data för att svara på min egen frågeställning. I steg tre så har jag fått möjlighet att testa mina bilduppgifter för att undersöka hur de förväntas fungerar i praktiken. Genom dessa tester så har jag fått hjälp och inspiration av elever med min undersökning.


---

22 Bild 3.
5 Teoretiska perspektiv


---

25 Selander & Kress (2010), s. 19 ff.
6 Tidigare forskning

Det har forskats och forska fortfarande en hel del på hur vi lär oss programmering i våra skolor. Jag har valt ut två avhandlingar att fördjupa mig i. En licentiatavhandling av Mikael Segolsson som heter Programmeringens intentionala objekt och en doktorsavhandling av Lennart Rolandsson som heter Programmed or not.

6.1 Programmeringens intentionala objekt
Nio elevers uppfattningar av programmering

Mikael Segolsson
Karlstad University Studies
Karlstad: Universitetstryckeriet 2006

I denna avhandling så undersöker Mikael Segolsson vad programmering är för elever från skolår åtta och nio i svensk grundskola. Syftet med avhandlingen är att förstå och beskriva vad eleverna riktar sin uppmärksamhet mot under programmeringshandlingen.

Frågeställningen följer syftet och är ställd så här: Vad riktar eleverna sin uppmärksamhet mot i sina beskrivningar av programmeringshandlingen? \(^{26}\) Studiens objekt är handlingen programmering. Själva akten då ett program konstrueras. \(^{27}\) Jag har fått stor nytta av denna avhandling eftersom den undersöker vad programmering är på olika sätt. Segolsson redogör tydligt hur han använder ordet och hur det uppfattas av elever. Detta har givit mig en bild av vad ordet programmering är och idéer om vad det skulle kunna vara i skolan. I inledningen av avhandlingen beskrivs hur programmering upplevs som krångligt av många studenter. Här visar tidigare forskning att det finns en svårighet för elever att se kopplingen mellan programmeringsmomentet och resultatet.

While programming can be fun and creative, learning how to program can be difficult, both for children and for adults. One reason for that programming can be hard is that there exists a mental distance, a kind of gap, between the program (the source code) and the result seen on the computer screen when running the program. \(^{28}\)

Glappet mellan programmet och resultatet är en vanlig beskrivning av var i processen lärandeproblematiken kan uppstå. Människors erfarenheter av programmering hamnar i

\(^{26}\) Segolsson (2006), s. 14 f.
\(^{27}\) Ibid., s. 72.
baksätet och fokus riktas på tekniken, datorn, källkoden och skärmen. Det är lätt att undervisningen reduceras till att lära sig syntax istället för de tankesätt som utgör grunderna för att kunna programmera. Problematiken kring programmering är något som jag känner igen speciellt när jag själv försöker lära mig och fastnar i syntax.


A. Programmeringshandlingen beskrivs med uppmärksamheten riktad mot systematiskt indelning av programmet.

B. Programmeringshandlingen beskrivs med uppmärksamheten riktad mot att komma ihåg tidigare programlösningar.

C. Programmeringshandlingen beskrivs med uppmärksamheten riktad mot robotens rörelser.

D. Programmeringshandlingen beskrivs med uppmärksamheten riktad mot att lösa uppgiften.

Schematisk bild över studiens fyra beskrivningskategorier i utfallsrummet.

Jag fastnar för något som händer i utfall D. Programmeringshandlingen beskrivs med uppmärksamheten riktad mot att lösa uppgiften. En elev (E) beskriver sitt sätt att tänka kring programmering på detta sätt:

I: Kan du beskriva vad det är du tänker på när du programmerar?
E: Jag tänker… först tänker jag på vad är det jag ska lösa. I detta fall skulle jag köra fram roboten tills den stöter emot. Då får jag se vad som finns […] vad använder jag för instrument för att få den att stanna […]
I: Du beskrev tidigare att du tänker på vad är det jag ska lösa, hur tänker du på det?
E: Nu är det ju inga hinder som man vet om eller något i vägen, utan den ska köra framåt för att sedan åka bakåt och svänga. Då får man ju liksom bygga upp en bild i huvudet, vad är det som ska hända och hur.
I: Hur ser den bilden ut?
E: I detta fall, så kan man tänka sig ett kalt… platt golvv med en vägg i vägen som den ska köra rakt in i, det är ett exempel […]

Här beskriver eleven en förmåga att skapa inre bilder. Under intervjuerna visar det sig att detta sätt att skapa mentala bilder är något som vi måste träna oss till. Eleverna beskriver detta som en förmåga och uppnås denna förmåga hjälper de mentala bilderna eleverna att lägga nya

29 Segolsson (2006), s. 10 f.
30 Bild 4
erfarenheter till de tidigare genom att ”bilderna uppdateras”. Att vi kan skapa inre bilder när vi programmerar är något som jag vill fortsätta undersöka i mitt arbete. Här ser jag något som är kopplat till programmering och som kan övas på genom bilduppgifter.

6.2 Programmed or Not
A study about programming teachers’ beliefs and intentions in relation to curriculum

Lennart Rolandsson
Department of learning
KTH School of Education and Communication in Engineering Science
2015

Denna avhandling bygger på fyra tidigare arbeten av Lennart Rolandsson:

1. Programming in School: Look back to move forward.
2. Teachers’ Beliefs Regarding Programming Education.
3. Bridging a Gap - In search of an analytical tool capturing teachers’ perceptions of their own teaching.
4. Intentions and Pedagogical Actions - A study of programming teachers’ construction of a learning objective.


31Segolsson (2006), s.75-87

Lennart Rolandsson utgår från ett problem som jag känner igen. Det finns ett glapp mellan lärares intentioner, det som händer i klassrum och det som upplevs av elever. Om vi pratar om läroplan så kan detta beskrivas som tänkt läroplan (framtagen av läroplansutvecklare), genomförd läroplan (genomförd av lärare) och upplevd läroplan (hur den upplevs av elever). En intressant liknelse görs mellan läroplan, lärares intentioner och programmering.

In attributing reasons for action to an agent we normally also attribute to him various abilities, beliefs, desires and inclinations, the understanding of institutions and practices of the community, and other things which characterize him as a person. Some of these features may date far back in his life history. They constitute a kind of background or ‘program’ which has to be assumed if certain things he did or which happened to him shall count as reasons for subsequent action [...] These other things, then, speaking metaphorically, are ‘inputs’ playing on the ‘keyboard’ of his programmed personality. His action is the ‘output’.33


32 Rolandsson (2015), s. 7 f.
35 Rolandsson (2015), s. 10 ff.
än teoretiskt och att elever som ej anses ha ett anlag för det praktiska ej kan lära sig programmering. Detta gör att programmeringsundervisningen kan uppfattas som exkluderande.\textsuperscript{36} Avhandlingen har lösningar på dessa problem via förslag på ändringar i vår läroplan. En annan lösning är att göra en koppling mellan programmering och kreativitet. Vi bör se handlingen att programmera som ett skapande likt den process vi har när vi utnyttjer oss själva konstnärligt.\textsuperscript{37}

Utöver dessa två avhandlingar så finns det en mängd av inspiration att hitta i litteratur och på internet. Jag låter Bret Victor stå med här som ett exempel på hur lärandet av programmering behöver vara något mer än lärandet av syntax:

\begin{quote}
...Programming is a way of thinking, not a rote skill. Learning about "for" loops is not learning to program, any more than learning about pencils is learning to draw… People understand what they can see. If a programmer cannot see what a program is doing, she can't understand it.\textsuperscript{38}
\end{quote}

7 Bearbetning och analys

I detta kapitel beskriver jag min designprocess som består av tre steg.

7.1 Steg ett Identifiera problem och försöka förstå dessa problem


\begin{flushleft}
\textsuperscript{36}Rolandsson (2015), s. 57 ff.
\textsuperscript{37}Ibid, s. 48.
\textsuperscript{38}Victor, Bret, \textit{Bret Victor, Beast of Burden}, worrydream.com, 08-05-2016.
\end{flushleft}
lära oss syntaxen utan att först sträva efter en djupare insikt i vad programmering är. Leon E Winslow beskriver detta i en artikel.42

“Many students had only a rudimentary understanding of programming” [...]“[o]ne wonders [...] about teaching sophisticated material to CSI [Computer Science and Information] students when study after study has shown that they do not understand basic loops [...]”43

Jag skulle vilja likna detta sätt att lära sig syntax utan att starta med en stadig grund av problemlösning vid att lära sig musik genom att först skriva noter utan att spela och lyssna eller att lära sig laga mat genom att blint följa ett recept utan att smaka av. Vi behöver undersöka vad vi gör när vi programmerar innan vi tar tag i ett programspråks syntax.

Jag har nu identifierat två problem kring lärandet av programmering och det är dessa problem som jag vill undersöka:

1. Ordet programmering betyder olika saker för olika personer.

2. När vi lär oss programmering ligger fokus på syntax istället för problemlösning.

Problematiken kring att skapa förutsättningar för lärande av programmering blir tydlig i ett glapp mellan lärarens intentioner, lärarens iscensättning av intentionerna och elevers mottagande av lärarens iscensättningar av intentionerna.44 Jag vill vara tydlig med mina intentioner kring dessa två problem. Jag börjar med mina intentioner kring programmering och hur jag vill skapa förutsättningar för lärande kring programmering i bildämnet och förhoppningsvis förutsättningar för att undvika den problematik som beskrivs i de avhandlingar jag har läst.

1. Jag vill synliggöra vad programmering betyder för mig.

2. Jag vill lägga fokus på problemlösning och ett undersökande av programmering.

Med dessa två punkter i bakhuvudet börjar jag nu skapa bilduppgifter.

42Rolandsson (2015), s. 4 f.
43Winslow (1996), s. 21.
44Rolandsson (2015), s. 59.
7.2 Steg två Design av bilduppgifter

Jag lär mig om programmering samtidigt som jag funderar på hur jag kan skapa förutsättningar för lärande av programmering. Mitt eget lärande består av att läsa, testa och koppla ny kunskap om programmering med det som jag redan kan om kreativitet och skapande. Lärandet sker parallellt med skapandet. I mitt eget lärande så undersöker jag hur jag använder programmering som verktyg för problemlösning. Detta genom ett gestaltande arbete som jag beskriver i kapitel 8.2.

Tidigt i min designprocess så bestämmer jag mig för att designa och testa tre bilduppgifter. Ett antal som låter mig testa tre olika aspekter av problem som kan undersökas med programmering och ett lagom antal för att jag ska kunna göra en djupare undersökning av varje bilduppgift. Efter detta val av antal uppgifter funderar jag på vad jag ska välja att mina bilduppgifter ska fokusera på och vad jag då väljer bort. Jag funderar även på mina intentioner och hur jag kan iscensätta dem genom mina bilduppgifter. Inspirerad av det jag har läst och av diskussioner med andra lärare ställer jag dessa krav på mina bilduppgifter:

1. De skapar förutsättningar för lärande av programmering.
2. De är bilduppgifter.
3. De utgår från bildestalens resurser.
4. De är användbara i praktiken.
5. De är relevanta och hållbara.

För att mina uppgifter ska skapa förutsättningar för lärande av programmering har jag valt tre saker som har med programmering att göra. De är instruering, slinga och selektion. Första uppgiften handlar om instruering och låter oss träna på att skapa instruktioner genom att förmedla innehållet i en bild till en någon som följer instruktionerna och ritar bilden.

Uppgiften som handlar om slingor låter oss testa att förändra en slinga och undersöka vad som händer beroende på hur vi förändrar den och hur många upprepningar vi gör. Uppgiften som handlar som selektion låter oss skapa olika val inför ett kreativt arbete och sedan slå en tärning för att låta slumpen bestämma vilket utfall de får. Mina förhoppningar är att vi får förutsättningar för att lära oss grunderna för programmering genom att vi undersöker instruering, slinga och selektion genom att utföra bilduppgifter. Gemensamt för de tre bilduppgifterna är att de i första hand ska vara bilduppgifter. Vi tränar på bildseende, kreativa

Jag ser du ritar

Loop

Om det här då det där

Till varje bilduppgift så har jag formulerat en uppgiftsslapp tänkt som stöd vid genomförandet av dem. Se bilagor 1, 2 och 3.

7.2.1 Jag ser du ritar


Hur gav vi instruktioner till varandra?

Vilka ord använde vi?

Hur tolkade vi instruktionerna?

Vilka maskiner kan vi ge instruktioner till i vår vardag?

Vilka konstnärer arbetar med instruktioner på ett liknande sätt?

Ett av de första testen på bilduppgiften Jag ser du ritar. Jag har beskrivit bilden och en konstnär har ritat.45

45 Bild 6.
7.2.2 Loop


Vilka riktningar och siffror testade vi?

Hur påverkade antalet siffror vår loop?

Vilka konstnärer arbetar med liknande metoder?

Här har jag själv testat att utföra bilduppgiften Loop.

---

46 Bild 7.
7.2.3 Om det här då det där

*Om det här då det där* är en bilduppgift som handlar om selektion. Selektion är en instruktion som används inom programmering för att instruera en dator eller maskin vad den ska göra om vissa krav uppfylls. Denna uppgift är inspirerad av en bilduppgift som grafikern Karin Törnros fick utföra när hon gick på Grafikskolan i Stockholm. Från början är denna uppgift en zen buddhistisk övning som använder slumpen för att styra skapandet. Om det här då det där (på engelska if this then that) betyder att vi bestämmer att om något händer då händer något mer. Till exempel om jag trycker på en knapp så tänds en lampa. Vi skapar våra egna om det här då det där satser. Detta gör vi genom att välja tre färger, tre humör och tre djur. Sedan slår vi en tärning och låter slumpen bestämma vilken färg, humör och djur var och en ritar. Vi jämför sedan vilka om det här då det där satser var och en började med och hur det påverkade våra bilder. Som intro till denna uppgift pratar vi om selektion och om det här då det där satser. Efter vi har ritat och tittat på allas teckningar diskuterar vi vår programmering och hur vi skulle kunna använda denna typ av programmering i våra kreativa processer. Några frågor som vi kan diskutera är:

Vem bestämde vad du skulle rita?

Vilka konstnärer arbetar på liknande sätt?

Vilka saker är programmerade på detta sätt?

![Image](https://example.com/image.png)

Här har jag själv testat att utföra bilduppgiften *Om det här då det där.*

---

47 Bild 8.
7.3 Steg tre Test av bilduppgifter med hjälp av elever

Bilduppgifterna är mina iscensättningar av mina intentioner och jag undersöker mottagandet av mina iscensättningar genom att testa bilduppgifterna tillsammans med elever.

7.3.1 Test 1

Torsdag 31-03-2016

Testar bilduppgifterna med hjälp av en elev som går i trean i gymnasiet. 19 år.

Vi börjar med att prata om programmering.

\[
\begin{align*}
J &= \text{John} \\
E &= \text{Elev} \\
J: \text{Har du programmerat tidigare?} \\
E: \text{Nej.} \\
J: \text{Vad är programmering för dig?} \\
E: \text{Vet inte riktigt. Jag tänker nog mest på spel.}
\end{align*}
\]

Jag berättar lite om mitt arbete och kopplingslagen mellan mina bilduppgifter och programmering.

Vi gör uppgiften \textit{Loop}

Vi gör uppgiften *Om det här då det där*


Vi gör uppgiften *Jag ser du ritar*


Vi avslutar med att prata om programmering. Hon har fått en ny bild av programmering. Programmering är musik. Hon berättar att de har fått göra hemsidor i skolan och då programmerade hon men det var ingen som pratade om att det var programmering.

Bilder från test 1. Loop, Om det här då det där och *Jag ser du ritar.*

---

48 Bild 9.
7.3.2 Test 2

Måndag 18-04-2016

Testar bilduppgifterna med hjälp av två elever från grundskolan. 11 år pojke och 15 år flicka.

Vi börjar med att prata om programmering.

J = John

E1 = Elev 1

E2 = Elev 2

J: Har ni testat att programmera tidigare?

E1 och E2: Nej

J: Vad tänker ni att programmering är?

E1: Vet ej.

E2: Programmering har med datorer att göra och spel.

E1: Ja jag tänker också på spel.

Jag berättar lite om mitt arbete och kopplingen mellan mina bilduppgifter och programmering.

Vi gör uppgiften Jag ser du ritar

Vi gör uppgiften *Loop*


Anledningen är att uppgiften skulle vara roligare om det fanns ett mål. Den äldre eleven håller inte med och tycker att uppgiften fungerar bra som den är och att det är bättre att bara testa att göra olika mönster utan ett specifikt mål.

Vi gör uppgiften *Om det här då det där*

Efter att vi har läst uppgiftslappen så får den äldre eleven direkt en idé till en förbättring av hur tärningen används. Istället för att använda det krångliga system som jag hade kommit på (se bilaga 3) så är det bara att räkna från vänster till höger det antal som tärningen visar.


![Bilder från test 2.](image1)

*Jag ser du ritar, Loop och Om det här då det där.*

---

49 Bild 10.
8 Tolkning och resultat


50 Test 1.
programmering att göra och vi tränade på att lösa programmeringsproblem utan att använda oss av ett programspråk eller en avancerad syntax.\textsuperscript{51}

8.2 Gestaltning


\textsuperscript{51} Test 2.
\textsuperscript{52} `Servo', arduino.cc/en/reference/servo, 06-05-2016.
Jag har valt att bygga min gestaltning av återvunnet material. Spillbitar av trä, meccano från ett modellflygplan och plastbitar hämtade från sopkorgen. Precis som min kod är plockad från andra så är mitt material ett hopkok av det jag hittar.

Bilder på Error Syntax när den står i Konstfacks vårutställning 2016.53


10 Slutförraddiskussion


53 Bild 11.
som vi väl känner till. Programmering kan vara musik, det kan vara lek, det är kreativt och det behöver inte vara svårt. Genom att tydliggöra mina föreställningar om programmering och mina intentioner kring lärandet av programmering för mig själv så har jag förbättrat mina egna förutsättningar för att kunna skapa förutsättningar för lärande av programmering i bildämnet.

10.1 Framtida studier


10.2 Error Syntax


---

54 Scratch – Imagine, Program and Share, scratch.mit.edu, 30-04-2016.
11 Källförteckning

11.1 Tryckta källor


Linköping: Linköpings universitet, Avd. Computer and Information Science

Plomp, Tjeerd & Nieveen, Nienke (2010), *An introduction to educational design research*, Enschede: SLO

Rolandsson, Lennart (2015), *Programmed or not*, Stockholm: KTH


Selander, Staffan & Kress, Gunther (2010), Design för lärande – ett multimodalt perspektiv, Finland: Norstedts


11.2 Otryckta källor

Test 1, Utfördes 31-03-2016 av John Arborgh tillsammans med en gymnasieelev

Test 2, Utfördes 18-04-2016 av John Arborgh tillsammans med två grundskoleelever
11.3 Internetkällor

"Gör programmering till ett eget ämne", dagenssamhalle.se,

Arduino – Servo, arduino.cc/en/reference/servo

Computer Science Unplugged, csunplugged.org

Home – LEGO MINDSTORMS, lego.com/en-us/mindstorms

Quirkbot, quirkbot.com

Richter Brising, Elisabeth (2015), Slöjd + kod = sant i Finland | Lärarnas nyheter, larnasnyheter.se

Scratch – Imagine, Program and Share, scratch.mit.edu

Skoldebatt: ska slöjden bytas ut mot programmering? – P1-morgon | Sveriges Radio, sverigesradio.se

Svenska akademien ordlista över svenska språket (2015), svenskakademien.se

Sol LeWitt – Wikipedia, the free encyclopedia, en.wikipedia.org/wiki/Sol_LeWitt


Victor, Bret, Bret Victor, Beast of Burden, worrydream.com

Wen Zhu, wenzhuart.com

Ämne – Bild(gymnasieskolan), skolverket.se
12 Bildförteckning

Bild 1: Skapad av en grundskoleelev under test 1

Bild 2: John Arborgh, Schematisk bild över designprocess, 2016

Bild 3: John Arborgh, Slinga av läsa och designa, 2016

Bild 4: Mikael Segolsson, Schematisk bild över studiens fyra beskrivningskategorier i utfallsrummet, 2006

Bild 5: Lena Henckel, Pritty Barnpullover, Okänt årtal, Nossebro: Hydins Tryckeri


Bild 7: John Arborgh, Loop, 2016

Bild 8: John Arborgh, Om det här då det där, 2016

Bild 9: Bilder från test 1, bilden använd i Jag ser du ritar är en reklambild från Kungsörnen.


Bild 11: John Arborgh, Error Syntax, 2016
13 Bilagor

13.1 Bilaga 1 – Jag ser du ritar

Skola: (Konstfack) Kurs: (Bild, 100 poäng) Lärare: (John Arborgh) Datum: (31-03-2016)

Jag ser du ritar

Intro
Att programera är att skapa instruktioner till en maskin eller dator. Dessa instruktioner är ofta skrivna i ett program språk, en specifik kod, som en dator eller maskin kan förstå. Vi kommer nu att öva på instruering i denna bilduppgift. Vi kommer även att träna på vårt bildseende och bildtänkande. Vi kommer att göra detta utan att använda ett program språk, istället kommer vi att använda vårt eget vanliga språk.

Material
Bilder t ex konstverk, vykort, illustrationer
Papper
Penna

Instruktioner
Vi turas om så att alla får testa att skapa och följa instruktioner.

Outro
Vi avslutar denna uppgift med att titta på bilderna vi har beskrivit och bilderna som vi har skapat. Vi diskuterar vad vi har lärt oss.

Frågor
Hur gav vi instruktioner till varandra?
Vilka ord använde vi?
Hur tolkade vi instruktionerna?
Vilka maskiner kan vi ge instruktioner till i vår vardag?
Vilka konstnärer arbetar med instruktioner på ett liknande sätt?
Jag ser du ritar

Förutsättningar att utveckla följande:
Förmåga att se, analysera, tolka och samtala om olika typer av bilder. Förmåga att använda ämnesområdets språk och etablerade begrepp för att förklara och värdera eget och andras bildarbete samt andra visuella företeelser.

Följande centrala innehåll:

Kunskapskrav:

E
Eleven gör enkla bildtolkningar, redogör översiktligt för bildens byggestenar och diskuterar översiktligt bildbetydelser i samband med det egna arbetet. I detta använder eleven med viss säkerhet relevanta begrepp. Dessutom gör eleven enkla bedömningar av egna och andras bilder samt enkla reflektioner över bildens funktion.

D
Betyget D innebär att kunskapskraven för E och till övervägande del för C är uppfyllda.

C

B
Betyget B innebär att kunskapskraven för C och till övervägande del för A är uppfyllda.

A
13.2 Bilaga 2 – Loop

Skola: (Konstfack) Kurs: (Bild, 100 poäng) Lärare: (John Arborgh) Datum: (31-03-2016)

Loop

Intro
En slinga (på engelska loop) är ett sätt att inom programmering åstadkomma en upprepning. Vi kommer att undersöka hur slingor beter sig i denna uppgift.

Material
Papper med rutor
Penna

Instruktioner
Först bestämmer vi oss för ett antal riktningar. Vi börjar med en slinga som bildar en oktagon. Riktningarna vi använder oss av då är:

![Diagram av oktagon](image)

Efter att vi har bestämt ett antal riktningar så ska vi välja hur många steg vi ska ta i varje riktning. Vi börjar med att testa med att bara ta ett steg åt gången. Alltså vi ritar på det rutiga pappret och drar pennan ett steg åt höger, ett steg snett upp höger och så vidare till vi har kommit tillbaka till början. Då kan vi sluta i detta fall och vi har utfört en slinga som ser ut så här:

![Diagram av slinga](image)


Outro
Vi avslutar denna uppgift med att titta på våra bilder och jämför vilka siffror vi har använt. Vi parar om vad som händer med vår loop beroende på vad vi ändrar.

Frågor
Vilka riktningar och siffror testade vi?
Hur påverkade antalet siffror vår loop?
Vilka konstnärer arbetar med liknande metoder?
Loop

Förutsättningar att utveckla följande:
Förmåga att se, analysera, tolka och samtala om olika typer av bilder. Förmåga att använda ämnescursplanets språk och etablerade begrepp för att förklara och värdera eget och andras bildarbete samt andra visuella företeelser.

Följande centrala innehåll:

Kunskapskrav:

E
Eleven gör enkla bildtolkningar, redogör översiktligt för bildens byggnärvar och diskuterar översiktligt bildbetydelser i samband med det egna arbetet. I detta använder eleven med viss säkerhet relevanta begrepp. Dessutom gör eleven enkla bedömningar av egna och andras bilder samt enkla reflektioner över bildens funktion.

D
Betyget D innebär att kunskapskraven för E och till övervägande del för C är uppfyllda.

C

B
Betyget B innebär att kunskapskraven för C och till övervägande del för A är uppfyllda.

A
Om det här då det där

Intro
Om det här då det där (på engelska if this then that) är en instruktion som används inom programmering för att instruera en dator eller maskin vad den ska göra om vissa krav uppfylls.

Material
Papper
Färgpennor, målarfärgar eller akvarellfärger
En tärning.

Instruktioner

Innan vi börjar rita så slår vi nu en tresidig tärning (eller en sexsidig, delar siffran på två och avrundar uppåt). Först för vilken färg var och en kommer att använda sedan vilket humör djuret ska ha och till sist vilket djur det kommer att bli. Vi ritar var sin bild och när alla är klara sätter vi upp teckningarna på väggen i en rad.

Outro
Vi tittar på bilderna och jämför varandras om det här då det där satser.

Frågor
Vem bestämde vad du skulle rita?
Vilka konstnärer arbetar på liknande sätt?
Vilka saker är programmerade på detta sätt?
Om det här då det där

Förutsättningar att utveckla följande:
Förmåga att se, analysera, tolka och samtala om olika typer av bilder. Förmåga att använda ämnensområdets språk och etablerade begrepp för att förklara och värdera eget och andras bildarbete samt andra visuella företeelser.

Följande centrala innehåll:

Kunskapskrav:

**E**
Eleven gör enkla bildtolkningar, redogör översiktligt för bildens byggstenar och diskuterar översiktligt bildbetydelser i samband med det egna arbetet. I detta använder eleven med viss säkerhet relevanta begrepp. Dessutom gör eleven enkla bedömningar av egna och andras bilder samt enkla reflektioner över bildens funktion.

**D**
Betyget D innebär att kunskapskraven för E och till övervägande del för C är uppfyllda.

**C**

**B**
Betyget B innebär att kunskapskraven för C och till övervägande del för A är uppfyllda.

**A**